Climate change and the changing fates of Asia's native honeybees

AT BOLLIN

James C Makinson

Hawkesbury Institute for the Environment

Climate change and the changing fates of Asia's native honeybees

- The effects of climate change will not be uniformly felt across all species.
- Many species are anticipated to be driven towards extinction.
- Some species may be set to thrive under changing climatic conditions
- Asian Apis provide an interesting model system to study how closely related species respond to climate change.

12 currently recognised species separated into 3 broad categories based on nesting biology:

- Dwarf open nesters
- Giant open nesters
- Cavity nesters

Dwarf open nesters

- 2 different species

Giant open nesters

IT IS IS

Cavity nesters

- 6 different species

R. R. BOL

Focal species for today

- Black dwarf honeybee (Apis and reniformis)
- Red dwarf honeybee (Apis florea)
- Asian hive bee (Apis cerana)

Which climate change scenarios to model?

- Representative Concentration Pathways (RCPs)
- Four separate climate models:

incoming solar radiation (340 W/m²)

RMP 4.5

radiative
forcing level
stabilizes at
4.5 W/m2
before 2100
Assumes
we enact a
range of
climate
change
mitigation
measures

RMP 8.5 - CO₂ level rises to 936ppm by 2100 - global temp rise by 5-6°C

• We feel RM 6.0 is a realistic starting point

Source: climate.nasa.gov

 Initial data collection and modelling was undertaken by Patrick Joanblanq during a 11 week undergraduate work experience program.

Choosing reliable species occurrence records

KIR BOLS

Creating range maps

- Initial data collection and modelling was undertaken by Patrick Joanblanq during a 11 week undergraduate work experience program.
- Current range was estimated using Model Builder in ArcGIS

 Analogous to 'Over predicting correction Tools' of the SDM Toolbox
 - a 0.5 degree convex hull was used to avoid over prediction of current range

Current predicted range for Apis *andreniformis*

Creating habitat suitability maps

- We used the Maxent software package and the SDS Toolbox for ArcGIS to plot maps of the current ranges, and global suitable habitat for each species.
- We then created maps of the current and potential future ranges of the species in 2070 under the moderate RCP 6 global warming scenario, which predicts a mean 1.3°C global temperature rise.

Calculation species ranges

Bio1 Annual Mean Temperature		
Bio2 Mean Diurnal Range (Mean of monthly (max temp - n temp))	nin	
Bio3 Isothermality (BIO2/BIO7) (* 100)		
Bio4 Temperature Seasonality (standard deviation *100)		
Bio5 Max Temperature of Warmest Month		
Bio6 Min Temperature of Coldest Month		
Bio7 Temperature Annual Range (BIO5-BIO6)		
Bio8 Mean Temperature of Wettest Quarter		
Bio9 Mean Temperature of Warmest Quarter		
Bio10 Mean Temperature of Warmest Quarter		
Bio11 Mean Temperature of Coldest Quarter		
Bio12 Annual Precipitation	Annual Precipitation	
Bio13 Precipitation of Wettest Month		
Bio14 Precipitation of Driest Month		
Bio15 Precipitation Seasonality (Coefficient of Variation)		
Bio16 Precipitation of Wettest Quarter		
Bio17 Precipitation of Driest Quarter		
Bio18 Precipitation of Warmest Quarter		
Bio19 Precipitation of Coldest Quarter		

Table 1: bioclimatic variables from Worldclim

Map 1: scores of suitability under climate conditions

Map 2: scores of suitability predicted for 2070s climate conditions

Current predicted range for Apis florea

Map 1: scores of suitability under current climate conditions

Map 2: suitability scores predicted for 2070s climate conditions

Current suitable range for Apis *florea* in Africa and the Americas

Map 1: scores of suitability under current climate conditions

Future suitable range for Apis florea in Africa and the Americas

Map 2: suitability scores predicted for 2070s climate conditions

Map 2: scores of suitability predicted for the 2070s climate conditions

Current suitable range for Apis *cerana* in Australia

Map 1: scores of suitability under current climate conditions

Future suitable range for Apis cerana in Australia

Map 2: scores of suitability predicted for the 2070s climate conditions

How fast are Apis florea and Apis cerana spreading?

1985 – Khartoum

Direction of propagation	Estimated speed of expansion
Khartoum -> North Sudan (along the Nile river)	40.4 km/year
Khartoum -> South Sudan	31.9 km/year
Khartoum -> Djibouti	42.4 km/year

Table 4: speed of expansion estimated for Apis florea

Apis cerana range expansion

Map 1: scores of suitability under current climate conditions

Map 2: scores of suitability predicted for the 2070s climate conditions

- The first nest was recorded in 2007.
- The distance between that record and the most distant record (dated of 2012) was measured.
- The speed of expansion towards south of Cairns city calculated was around 13.9 km/year.
- Future climate conditions may release Apis cerana from it's Cairn's prison

Climate change and the changing fates of Asia's native honeybees

- Both the red dwarf honeybee (A. florea) and the Asian hive bee (A. cerana) can be expected to see large range expansions.
- The greatest increase in suitable range will be in the areas of their current range expansions.

In contrast...

- *A. andreniformis* is facing a complete disappearance of suitable climate conditions.
- We propose that this species may be of conservation concern.
- As we model more species under more scenarios, we anticipate more will also fall into this category.

Acknowledgements

R Million

Patrick Joanblanq

Jason Lim

myself!

Hawkesbury Institute for the Environment